SPE 158092

High-Strength, Low-Density Cement Pumped On-The-Fly using Volumetric Mixing Achieves Cement to Surface in Heavy Loss Coal Seam Gas Field

Hui San Yap, Halliburton
presenting on behalf of
Brendon Tan, Halliburton, Matthew Lang, Halliburton and Devin Harshad, Santos
CSG Cementing Considerations

- Cement properties must satisfy isolation standards with the ability to support future loads
 - Slurry Density
 - Short thickening time
 - Fast compressive strength development
 - Fluid loss
 - Thixotropic
- Compared to conventional cementing, there is a greater need to control slurry invasion into the formation/coal cleats
- Lightweight cementing
 - Water-extended
 - Nitrified (Foam)
 - Hollow spheres (High-Strength, Low-Density)
- Lost circulation material
- Reactive Spacers
- Excess slurry volume
High-Strength, Low-Density (HSLD) Cement Design

- Lightweight slurry using hollow spheres
- Hollow microspheres SG is less than water
- Maintaining a high solids volume content which gives higher compressive strengths
- Highest short term compressive strengths
- Strength of cement is dependent on the Solids to Water Ratio (SWR)
- Typical densities of 8.6ppg to 13.0ppg
Solids to Water Ratio (SWR)

- For conventional-weight slurries, SWR varies only slightly with minor density changes.
- For some lightweight slurries, minor density changes result in drastic changes in SWR since SG of the solids is approaching SG of water.
- SWR affects all major slurry characteristics.
Volumetric Mixing

- Slurry mixing is conventionally based on density control
 - Density, water requirement, yield are inputs
 - Solids and water are adjusted until desired density is achieved
- Lightweight slurries should either be mixed in a batch mixer (if volume permits), or volumetrically mixed on-the-fly
- Volumetric mixing examines changes in volume of the mixing tub, and then changes the volume of solids while keeping mix water rate constant.

\[\text{Bulk} = \text{Slurry} - \text{Mix Fluid} \]
Field Implementation

- A trial was set up over a 3 well pad in a Queensland CSG field which is prone to heavy losses
- Objective was to achieve cement returns to surface and sufficient zonal isolation for future fracturing operations on each well’s production casing
- Improved methods of cementing were used on each subsequent well
Case Study

<table>
<thead>
<tr>
<th></th>
<th>Well 1</th>
<th>Well 2</th>
<th>Well 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacer Type</td>
<td>Standard</td>
<td>Reactive</td>
<td>Reactive</td>
</tr>
<tr>
<td>Slurry Density</td>
<td>12.0 ppg HSLD</td>
<td>12.0 ppg HSLD</td>
<td>11.0 ppg HSLD</td>
</tr>
<tr>
<td>Mixing System</td>
<td>Density-Control</td>
<td>Density-Control</td>
<td>Volumetric</td>
</tr>
<tr>
<td>LCM Additives</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Excess Volume</td>
<td>50%</td>
<td>100%</td>
<td>125%</td>
</tr>
<tr>
<td>Cement Returns to</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Top of Cement Achieved</td>
<td>Below Previous Shoe</td>
<td>Above Previous Shoe</td>
<td>Surface</td>
</tr>
</tbody>
</table>

HSLD Cement pumped on-the-fly using Volumetric Mixing achieves Cement to Surface in Heavy Loss CSG Field

Paper 158092 • Brendon Tan, Matthew Lang, Devin Harshad
Acknowledgements / Thank You / Questions

David Bedford
William Farrelly
Jordan Bunning
Jonathan Martin
Simon Hann